Telomere-lengthening procedure turns clock back years in human cells

Telomere-lengthening procedure turns clock back years in human cells

Researchers at the Stanford University School of Medicine have developed a new procedure to increase the length of human telomeres. This increases the number of times cells are able to divide, essentially making the cells many years younger. This not only has useful applications for laboratory work, but may point the way to treating various age-related disorders – or even muscular dystrophy.

The role of telomeres and telomerase in cell aging and cancer was established by scientists at biotechnology company Geron with the cloning of the RNA and catalytic components of human telomerase and the development of a polymerase chain reaction (PCR) based assay for telomerase activity called the TRAP assay, which surveys telomerase activity in multiple types of cancer.

Telomeres are “caps” on the ends of chromosomes that protect them from fraying, much like the end of a shoelace, and an enzyme, called telomerase, maintains their length. Telomeres shorten over time, and the rate at which this occurs can be increased by stress, leading to accelerated aging, cardiovascular disease, cancer, and an impaired immune system. The Telomeres investigation collects crew member blood samples to determine how telomeres and telomerase are affected by space travel.

NASA is also researching how Long-duration spaceflight takes a toll on the body. This includes increases in physical and emotional stresses that can impact crew health. Inadequatenutrition, disrupted sleep, and microgravity itself contribute to crew stress, which in turn can contribute to shortened telomeres. Radiation exposure can also shorten telomeres. This investigation identifies the spaceflight-related risks of accelerated telomere shortening and altered telomerase activity, which can have both short-term and long-term effects. Telomere degeneration could cause reduced immune function, which could have immediate effects on crew health, or it could cause cardiovascular disease and cancer years later. Telomere maintenance isan important biomarker for space travelers dealing with inadequate nutrition, radiation exposure, and physical and psychological stress.

Earth Applications
Stress can have dramatic effects on human health. Results from the Telomeres investigation are expected to improve understanding of how life stresses can influence telomere maintenance, which in turn is related to aging and age-related diseases. Establishing relationships between stress and shortened telomeres, including altered telomerase activity, could lead to potential countermeasures for reduced immune function, cardiovascular disease, and cancer.

 

http://med.stanford.edu/