NeuroLife, was invented at Battelle, which teamed with physicians and neuroscientists from The Ohio State University Wexner Medical Center to develop the research approach and perform the clinical study. Ohio State doctors identified the study participant and implanted a tiny computer chip into his brain.
Device allows paralyzed man to swipe credit card, perform other movements.
That pioneering participant, Ian Burkhart, is a 24-year-old quadriplegic from Dublin, Ohio, and the first person to use this technology. This electronic neural bypass for spinal cord injuries reconnects the brain directly to muscles, allowing voluntary and functional control of a paralyzed limb by using his thoughts. The device interprets thoughts and brain signals then bypasses his injured spinal cord and connects directly to a sleeve that stimulates the muscles that control his arm and hand.
The neural bypass technology combines algorithms that learn and decode the user’s brain activity and a high-definition muscle stimulation sleeve that translates neural impulses from the brain and transmits new signals to the paralyzed limb.
The Battelle team has been working on this technology for more than a decade. To develop the algorithms, software and stimulation sleeve, Battelle scientists first recorded neural impulses from an electrode array implanted in a paralyzed person’s brain. They used that recorded data to illustrate the device’s effect on the patient and prove the concept.
Four years ago, former Battelle researcher Chad Bouton and his team began collaborating with Ohio State Neurological Institute researchers and clinicians Rezai and Dr. Jerry Mysiw to design the clinical trials and validate the feasibility of using the neural bypass technology in patients.
Ohio State and Battelle teams worked together to figure out the correct sequence of electrodes to stimulate to allow Burkhart to move his fingers and hand functionally. For example, Burkhart uses different brain signals and muscles to rotate his hand, make a fist or pinch his fingers together to grasp an object. As part of the study, Burkhart worked for months using the electrode sleeve to stimulate his forearm to rebuild his atrophied muscles so they would be more responsive to the electric stimulation.
Ali Rezai, MD, is director of Ohio State’s Center for Neuromodulation. A board certified neurosurgeon, he has been involved in pioneering the use of brain pacemakers for treating Parkinson’s disease, depression, obsessive compulsive disorder and traumatic brain injury. His current research focuses on developing neuromodulation therapies to treat migraine headaches, asthma, addictions, Alzheimer’s, obesity, post-traumatic stress disorders and autism.