Studies have shown that spending a long time in space has a negative impact on the immune system of crew members. Medical scientists are particularly concerned about disruption of the development of white blood cells which are our first line of defense against illness.
The BONEMAC investigation analyze some defense cells from mouse bone marrow, and find that their numbers increase a lot faster during space flight than on the ground. Space flight also has an impact on coagulation, or blood clotting. These changes could affect production of white blood cells, which would affect the body’s ability to defend itself against pathogens on long-term spaceflights.
- Exposure to microgravity interferes with several important immune system and blood cell production processes. Disruption of the development of white blood cells (cells which are the first line of defense against new pathogens) is of particular concern for future space flights to the Moon and Mars.
- The BONEMAC experiment investigates the effects of microgravity on macrophage production and development using rodent bone marrow.
- The study will also examine how bone loss during space flight may adversely impact blood cell production.
Description
Space flight has been shown to hinder the development of mature macrophages (white blood cells); however, the mechanism for disrupting this critical immune process is poorly understood. An understanding of which cellular and molecular immune processes are affected by microgravity and how their disrupted functions affects macrophage development from bone marrow stem cells will provide key data for assessing immune function during space flight and crew risks associated with long duration missions to the Moon and Mars. Macrophage cell cultures will be developed using Advanced Separation (ADSEP) hardware and three removable CellCult cassettes. Cultures will be fixed on orbit and returned for analysis.
Mature macrophage cells and their activities are critical for immune function because they are immediately available for combating pathogens to which the body has never been exposed. Also, macrophages play a key role in signaling the activation of other immune cells and responses. The objectives of the BONEMAC experiment are:
- to investigate the effects of the space flight environment on blood production, the bone marrow, macrophage differentiation and gene expression, using primary rodent (mouse) bone marrow cultures
- determine the macrophage differentiation molecular mechanisms disrupted by space tfligh
- to obtain valuable information about which mechanisms involved in blood production are susceptible to disruption by loss of bone mass.
The expected results include increased understanding of how macrophage development is compromised by space flight conditions, and how this results in decreased immune response. This information is of critical importance for determining the potential effects of long duration space flight on human health.