Stanford Study Examines the Flexibility of the Human Brain

The brains of children with autism are relatively inflexible at switching from rest to task performance, according to a new brain-imaging study frobrain to usem the Stanford University School of Medicine.

Instead of changing to accommodate a job, connectivity in key brain networks of autistic children looks similar to connectivity in the resting brain. And the greater this inflexibility, the more severe the child’s manifestations of repetitive and restrictive behaviors that characterize autism, the study found.

“We wanted to test the idea that a flexible brain is necessary for flexible behaviors,” said Lucina Uddin, PhD, a lead author of the study. “What we found was that across a set of brain connections known to be important for switching between different tasks, children with autism showed reduced ‘brain flexibility’ compared with typically developing peers.”

The study looked at 34 kids with autism and 34 typically developing children. All of the children with autism received standard clinical evaluations to characterize the severity of their disorder. Then, the two groups were split in half: 17 children with autism and 17 typically developing children had their brains scanned with functional magnetic resonance imaging (fMRI) while at rest and while performing simple arithmetic problems. The remaining children had their brains scanned during two tasks: solving simple math problems and detecting differences among pictures of faces. The face recognition task was chosen because autism is characterized by social deficits; the math task was chosen to reflect an area in which children with autism do not usually have deficits.

Children with autism performed as well as their typically developing peers on both tasks — that is, they were as good at distinguishing between the faces and solving the math problems. However, their brain scan results were different. In addition to the reduced brain flexibility, the researchers showed a correlation between the degree of inflexibility and the severity of restrictive and repetitive beh
aviors, such as performing the same routine over and over or being obsessed with a favorite topic.

“This is the first study that has examined how the patterns of intrinsic brain connectivity change with a cognitive load in children with autism,” Menon said. The research is the first to demonstrate that brain connectivity in children with autism changes less, relative to rest, in response to a task than the brains of other children, he added.

“The findings may help researchers evaluate the effects of different autism therapies,” said Kaustubh Supekar, PhD, a research associate and the other lead author of the study.

For more information about this medical study, click here
.

The above content was derived from and/or originally published on: http://med.stanford.edu/news/all-news/2014/07/autistic-brain-less-flexible-at-taking-on-tasks–study-shows.html

Comments are closed.